Grothendieck Polynomials via Permutation Patterns and Chains in the Bruhat Order

نویسندگان

  • CRISTIAN LENART
  • FRANK SOTTILE
چکیده

We give new formulas for Grothendieck polynomials of two types. One type expresses any specialization of a Grothendieck polynomial in at least two sets of variables as a linear combination of products Grothendieck polynomials in each set of variables, with coefficients Schubert structure constants for Grothendieck polynomials. The other type is in terms of chains in the Bruhat order. We compare this second type to other constructions of Grothendieck polynomials within the more general context of double Grothendieck polynomials and the closely related H-polynomials. Our methods are based upon the geometry of permutation patterns.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval Structure of the Pieri Formula for Grothendieck polynomials

We give a combinatorial interpretation of a Pieri formula for double Grothendieck polynomials in terms of an interval of the Bruhat order. Another description had been given by Lenart and Postnikov in terms of chain enumerations. We use Lascoux’s interpretation of a product of Grothendieck polynomials as a product of two kinds of generators of the 0-Hecke algebra, or sorting operators. In this ...

متن کامل

ar X iv : a lg - g eo m / 9 70 30 01 v 1 2 8 Fe b 19 97 SCHUBERT POLYNOMIALS , THE BRUHAT ORDER , AND THE GEOMETRY OF FLAG MANIFOLDS

We illuminate the relation between the Bruhat order and structure constants for the polynomial ring in terms of its basis of Schubert polynomials. We use combinatorial, algebraic, and geometric methods, notably a study of intersections of Schubert varieties and maps between flag manifolds. We establish a number of new identities among these structure constants. This leads to formulas for some o...

متن کامل

Gröbner Geometry of Schubert Polynomials 1247

Given a permutation w ∈ Sn, we consider a determinantal ideal Iw whose generators are certain minors in the generic n × n matrix (filled with independent variables). Using ‘multidegrees’ as simple algebraic substitutes for torus-equivariant cohomology classes on vector spaces, our main theorems describe, for each ideal Iw: • variously graded multidegrees and Hilbert series in terms of ordinary ...

متن کامل

Combinatorial Aspects of the Cohomology and K-theory of Flag Varieties

In this talk we present some recent results related to Schubert and Grothendieck polynomials. These polynomials represent Schubert classes, which form the natural bases of the cohomology and K-theory of the complex flag variety. We present background information on several combinatorial constructions of Schubert and Grothendieck polynomials. Then we present the solution to a conjecture concerni...

متن کامل

IDENTITIES OF STRUCTURE CONSTANTS FOR SCHUBERT POLYNOMIALS AND ORDERS ON Sn

For Schubert polynomials, the analogues of Littlewood-Richardson coeecients are expected to be related to the enumeration of chains in the Bruhat order on S n. We reene this expectation in terms of certain suborders on the symmetric group associated to parabolic subgroups. Our main results are a number of new identities among these coeecients. For many of these identities, there is a companion ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004